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ABSTRACT
Video streaming represents a large fraction of Internet traf-
fic. Surprisingly, little is known about the network character-
istics of this traffic. In this paper, we study the network char-
acteristics of the two most popular video streaming services,
Netflix and YouTube. We show that the streaming strategies
vary with the type of the application (Web browser or native
mobile application), and the type of container (Silverlight,
Flash, or HTML5) used for video streaming. In particular,
we identify three different streaming strategies that produce
traffic patterns from non-ack clocked ON-OFF cycles to bulk
TCP transfer. We then present an analytical model to study
the potential impact of these streaming strategies on the ag-
gregate traffic and make recommendations accordingly.

Keywords
Video streaming1, Streaming strategies, YouTube, Net-
flix, Silverlight, HTML5, Flash.

1. INTRODUCTION
The popularity of video streaming has considerably

increased in the last decade. Indeed, recent studies have
shown that video streaming is responsible for 25-40%
of all Internet traffic [9, 22]. The two dominant sources
for video streaming traffic in North America are Netflix
and YouTube [9]. YouTube is also the most popular
source of video streaming traffic in Europe and Latin
America [9, 22].

Despite this popularity, little is known about the
strategies used by YouTube and Netflix to stream their
videos. These strategies might have a fundamental im-
pact on the network traffic. TCP is used to transport
this traffic, but if this traffic is rate controlled by the
application, and this rate is lower than the end-to-end
available bandwidth, the traffic characteristics will not
be the one of a standard TCP flow. This might have
an impact on the network and the traffic coming from
other applications. In addition, most of the stream-
ing sessions are interrupted due to lack of interest [16,
1This is the author version of the paper accepted for publi-
cation at ACM CoNEXT 2011, December 6–9 2011.

17, 19]. Because of this, the streaming strategies may
have a significant impact on the network traffic. Indeed,
the amount of video downloaded but not watched is an
overhead for the network.

In this paper, we present an in depth network traffic
analysis of YouTube and Netflix. In particular, we con-
sider the impact of the application (Web browsers and
the applications for mobile devices), and the container
(Flash [10], HTML5 [18], Silverlight [4]), on the charac-
teristics of the traffic between the source and the viewer.
Then we present a mathematical model to evaluate the
impact of the streaming strategy on the aggregate data
rate of video streaming traffic.
Our contributions are the following:

1)We identify three different streaming strategies
with fundamentally different traffic properties ranging
from bulk TCP file transfer to non-ack clocked traffic.

2) We detail the network traffic characteristics of the
three streaming strategies currently used by YouTube
and Netflix.

3)We show that the streaming strategy depends on
the application and the container used to stream videos.
Therefore, the increased adoption of one could have a
significant impact on the network traffic characteristics.
For instance, following a massive adoption of HTML5
instead of Flash, or an increase in the usage of mobile
applications.

4) We derive a mathematical model to evaluate the
impact of the streaming strategies on the stochastic
properties of the aggregate video streaming traffic. Our
model can be used to dimension the network for video
streaming. In particular, it sheds light on the im-
portance of the different video streaming parameters
for traffic engineering. For example, we show that
an increase in the video encoding rates shall produce
smoother aggregate video streaming traffic. We also
present the video streaming parameters that can be
adapted to minimize the amount of unused bytes on
user interruptions due to lack of interest.

The remainder of the paper is organized as follows.
In Section 2 we provide an overview of video streaming.
We then present the three different streaming strate-
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gies we identified in Section 3. We discuss the datasets
and measurement techniques in Section 4. We detail
the network characteristics of the streaming strategies
used by YouTube and Netflix in Section 5. In Section 6
we present our model and discuss the potential im-
pact of these streaming strategies on the aggregate
video streaming traffic. We discuss the related work
in Section 7 and present our conclusions in Section 8.

2. VIDEO STREAMING BACKGROUND
Video streaming enables viewers to start video play-

back while the content is being downloaded. The two
dominant sources for video streaming traffic in the In-
ternet are Netflix and YouTube [9]. Users can view
Netflix and YouTube videos either on PCs, using a Web
browser, or on mobile devices, using a Web browser or
a mobile application. A mobile application is the na-
tive Netflix or YouTube application running on mobile
devices. In this paper, for the mobile devices, we exclu-
sively consider the native YouTube and Netflix applica-
tions for the iOS and Android devices.

YouTube, one of the most popular sites for user gen-
erated videos, supports two containers for video stream-
ing, Adobe Flash [10] and HTML5 [18]. Adobe Flash,
henceforth referred to as Flash, is the default container
when YouTube is accessed via a PC. Users need to
install a proprietary plugin for viewing Flash videos.
HTML5 supports videos that do not require any pro-
prietary plugins. HTML5 is the default container when
YouTube videos are streamed using the native mobile
application for Android and iOS. Recently, YouTube
has started supporting High Definition (HD) stream-
ing. The default container for HD videos is Flash.

Netflix uses Microsoft Silverlight [4] to stream videos.
As of today, Netflix does not support any other contain-
ers for video streaming even though Netflix is leverag-
ing HTML5 for streaming. While streaming to a Web
browser requires a Silverlight plugin, the mobile devices
require the native Netflix application.

Netflix and YouTube use TCP to stream videos. Dur-
ing a typical streaming session, apart from the video
content, the streaming servers send other auxiliary
data. For example, the auxiliary data includes details
of related videos and advertisements. In this paper, we
restrict ourselves to the TCP connections that are used
to transfer the video content. We are interested in these
TCP connections because these connections contribute
to the bulk of the traffic generated by video streaming.

3. STREAMING STRATEGIES
In this section, we present the three different stream-

ing strategies that we identified using the experiments
described in Section 5. Our goal here is to synthesize
the main characteristics of those strategies and present
some of their advantages and disadvantages.
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Figure 1: Phases of video download. Video streaming
begins with a buffering phase followed by a steady state
phase. Cycles of ON-OFF periods in the steady state
phase are used to limit the download rate.

During a typical streaming session, the video content
is transferred in two phases: a buffering phase followed
by a steady state phase. During the buffering phase, the
data transfer rate is limited by the end-to-end available
bandwidth. In Figure 1, the slope of the line during
the buffering phase is the end-to-end available band-
width. The video player begins playback when a suf-
ficient amount of data is available in its buffer. Video
playback does not wait for the buffering phase to end.

In the steady state phase, the average download rate
is slightly larger than video encoding rate. We call the
ratio of the average download rate during the steady
state phase and the video encoding rate the accumu-
lation ratio. An accumulation ratio of at least one is
desirable because an accumulation ratio lower than one
can cause the video playback to interrupt due to empty
buffers. An accumulation ratio larger than one implies
that the amount of video content present in the players
buffer increases during the steady state phase, which
improves the resilience to transient network congestion.

The average download rate in the steady state phase
is achieved by periodically transferring one block of
video content. These periodic transfers produce cycles
of ON-OFF periods. During each ON period, a block
of data is transferred at the end-to-end available band-
width that can be used by TCP; the TCP connection
is idle during the OFF periods. The slope of the down-
load amount during the ON periods in Figure 1 repre-
sents the end-to-end available bandwidth. We call the
amount of data transferred in one cycle the block size.

The buffering phase ensures that the player has a suf-
ficient amount of data to compensate for the variance in
the end-to-end available bandwidth during video play-
back. The reduced transfer rate in the steady state
phase ensures that the amount of video content does not
overwhelm the video player while keeping the amount
of buffered data during the buffering phase constant or
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increasing. The reduced data transfer rate is impor-
tant for mobile devices which may not be able to store
the entire video. We also believe that the reduced rate
during the steady state phase reduces the load on the
streaming infrastructure. The reduced load can increase
the number of videos that can be streamed in parallel.

We use the existence of the steady state phase and the
technique used to throttle the data transfer rate in the
steady state phase to identify the underlying stream-
ing strategy. We observe the following three streaming
strategies for Netflix and YouTube videos.

1) No ON-OFF Cycles. For this streaming strategy,
all data is transferred during the buffering phase. As
a consequence, we do not observe a steady state phase
for this streaming strategy. An advantage of this strat-
egy is that it requires no complex engineering at the
server and the client. The video streaming session can
be considered as a simple file transfer session. One dis-
advantage of this strategy is that it can overwhelm the
player and cause a large amount of unused bytes if users
interrupt the video playback.

2) Short ON-OFF cycles. We define this streaming
strategy as the periodic transfer of blocks of size less
than 2.5 MB (called an ON period) followed by an idle
period (called the OFF period). The goal of this stream-
ing strategy is to maintain an accumulation ratio which
is slightly larger than one. This is achieved by a pe-
riodic transfer of a block of data followed by an OFF
period. An OFF period is observed only when the av-
erage data transfer rate is smaller than the end-to-end
available bandwidth. We do not observe OFF periods,
and short ON-OFF cycles, when the end-to-end avail-
able bandwidth is less than or equal to the average data
transfer rate. This strategy ensures that the client is not
overwhelmed by the amount of data sent by the server.

3) Long ON-OFF cycles. This streaming strategy
produces a traffic pattern that resembles the periodic
execution of buffering phases following long idle peri-
ods. The primary difference between this strategy and
the strategy of short ON-OFF cycles is the amount of
data transferred in a cycle. The amount of data trans-
ferred during the ON periods for this strategy is larger
than 2.5 MB. For a given average rate during the steady
state phase, the cycle duration for the strategy of long
ON-OFF cycles is longer than the cycle duration for
the strategy of short ON-OFF cycles. This streaming
strategy is a hybrid of the no ON-OFF cycles and short
ON-OFF cycles streaming strategies.

4. METHODOLOGY
We now present the six datasets used in our mea-

surements and the technique used to capture the TCP
packets while streaming the videos in each dataset.

4.1 Dataset

We first created four datasets of YouTube videos and
two datasets of Netflix videos. The YouFlash, YouHtml,
YouHD, and YouMob dataset contain YouTube videos
while the NetPC and the NetMob dataset contain Net-
flix videos.

For the YouFlash, YouHD, YouHtml, and YouMob
dataset, we respectively searched for Flash videos, HD
videos, HTML5 videos, and videos that can be played
by the native iOS and Android application. The You-
Flash and YouHD datasets respectively contain ran-
domly selected 5000 Flash videos and 2000 HD videos.
The YouHtml dataset contains 2500 videos from the
YouFlash dataset and 500 videos from the YouHD
dataset; these videos can be played using the HTML5
player. For the YouMob dataset, we searched for videos
using the native YouTube application on an iPad.

The videos in the YouFlash and YouHD datasets
have encoding rates from 0.2 Mbps to 1.5 Mbps, and
0.2 Mbps to 4.8 Mbps respectively. The videos in the
YouFlash dataset have a default resolution of either
240p or 360p while videos in the YouHD dataset have
a default resolution of 720p. The videos in the You-
Flash and YouHD dataset are streamed using Flash as
the default container. The encoding rate of videos in
the YouHtml and YouMob dataset is from 0.2 Mbps to
2.5 Mbps, 0.2 Mbps to 2.7 Mbps respectively. When
using the HTML5 container to stream videos to PCs,
YouTube uses 360p as the default resolution; users
need to manually switch to a higher resolution such as
720p for viewing the video in HD. As it is currently
not possible to view HD videos using HTML5 on PCs
without manual intervention, we believe that the frac-
tion of users viewing HD videos using HTML5 on PCs
will be small. In this paper, for PCs, we restrict our
study to Flash videos played at the default resolution,
HD videos streamed using Flash, and HTML5 videos
streamed at the default resolution of 360p. We use
the default setting because Finamore et al. [16] ob-
served that users use the default player configuration
while streaming YouTube videos. We henceforth re-
fer to videos in the YouFlash dataset as Flash videos,
videos in the YouHD dataset as HD videos, and videos
in the YouHtml dataset as HTML5 videos.

For Netflix datasets, we collected the list of 11208
videos available for watching instantly as of 20-May-
2011. Then, we randomly selected 200 videos from this
list for the NetPC dataset. For the NetMob dataset we
randomly selected 50 videos from NetPC dataset.

4.2 Measurement Technique
We now present the list of software tools used for our

measurements. We used Internet Explorer 9 [2], Mozilla
Firefox 4.0 [5], and Google Chrome 10.0 [3] (henceforth
referred to as Chrome) for streaming videos on PCs.
These three browsers have a combined usage share of
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more than 80% [1]. For Flash videos, we installed the
Flash plugin 10.2 in each of these browsers. For Netflix
videos, we installed Microsoft Silverlight 4.0.60310. For
HTML5 videos, we installed the webM codec in Internet
Explorer as YouTube uses webM [7] as the default codec
used for HTML5 videos. Firefox and Chrome have a
built-in support from webM. We used tcpdump [6] on
Linux and windump [8] on Windows to capture the
packets exchanged between the web browser and the
streaming servers. To study the streaming strategies
used for mobile applications, we used an Android (ver-
sion 2.2) smart-phone and an iPad (iOS version 4.2.1).
We used the native YouTube and Netflix applications,
developed by YouTube and Netflix respectively for these
mobile devices.

We captured the packets exchanged during video
streaming in the following manner. When a PC was
used for streaming videos, we serially iterated through
the list of videos in each dataset and performed the
following steps for each video. We first started tcp-
dump, or windump depending on the operating system,
to capture the packets exchanged. We then started a
web browser and loaded the URL of a video on the
same machine to start the video streaming session. We
stopped the streaming session and the packet capture
after 180 seconds. For native mobile applications we
first started the packet capture on a machine that can
access the packets exchanged between the mobile appli-
cation and the streaming server. We then started the
video streaming. We stopped the packet capture and
streaming after 180 seconds.

We performed our measurements from the following
four locations.

1) A 100 Mbps wired connection connected to the
Internet through a 500 Mbps link. We refer to this net-
work as the Research network in the rest of the paper.

2) A 54 Mbps Wi-fi connection behind a ADSL router
with typical download rate of 7.7 Mbps and an upload
rate of 1.2 Mbps. This network is referred to as the
Residence network in the rest of the paper.

3) A 100 Mbps wired connection connected to the
Internet through a 1 Gbps link. We refer to this network
as the Academic network in the rest of the paper.

4) A 100Mbps wired connection behind a cable mo-
dem connected to the Comcast ISP; we observe a typical
download rate of 20Mbps and an upload rate of 3Mbps
in this network. We refer to this network as the Home
network in the rest of the paper.

The Research and the Residence networks are based
in France, while the Academic and the Home net-
works are based in the United States of America. The
YouTube measurements were carried out from each
of these four locations. The Netflix measurements
were carried out only in the Academic and Home net-
works because Netflix currently does not stream videos

Service YouTube Netflix

Container Flash HTML5
Flash
HD

Silverlight

Internet
Explorer

Short Short No Short

Mozilla
Firefox

Short No No Short

Google
Chrome

Short Long No Short

iOS
(native)

Not
Applica-
ble

Multiple Not
Applica-
ble

Short

Android
(native)

Long Long

Table 1: Streaming Strategies. Short, Long, and
No respectively stand for the strategies of short ON-
OFF cycles, long ON-OFF cycles, and no ON-OFF cy-
cles. Streaming strategy depends on the combination of
browser and container.

to France. For the native mobile applications, the
YouTube measurements were carried out in the Re-
search network by using a 54 Mbps Wi-fi connection;
the Netflix measurements were carried out using a
54 Mbps Wi-fi connection in the Academic network.
The YouTube measurements were carried out from 01-
Feb-2011 to 30-May-2011. The Netflix measurements
were carried out from 20-May-2011 to 14-Jun-2011.

5. MEASUREMENT RESULTS
The goal of this section is to present an in depth

analysis of YouTube and Netflix traffic and to show that
the video streaming traffic generated by YouTube and
Netflix can be classified in the three streaming strategies
discussed in Section 3.

Table 1 summarizes our finding on the strategies used
to stream Netflix and YouTube videos. While using the
Flash container, we observed that the applications do
not throttle the rate of data transfer; rate control if
any is performed by the YouTube servers. Therefore, in
Table 1, the streaming strategy is independent of the
application used for Flash videos and HD videos. For
HTML5 videos, we observed that the YouTube servers
do not explicitly control the data transfer rate. Because,
the applications use their own techniques to throttle the
data transfer rate, we observe that the streaming strate-
gies for HTML5 videos depend on the application used.
We observed that Netflix uses short ON-OFF cycles for
streaming videos to PCs irrespective of the web browser.
However, the streaming strategies differ for the native
mobile applications; we observe short ON-OFF cycles
for iPad and long ON-OFF cycles for Android.

To characterize the traffic we use three different
metrics: the amount downloaded during the buffering
phase, the blocks size, and the accumulation ratio. To
compute the accumulation ratio we need the encoding

4
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0 2 4 6 8 10
0

128

256

384

Time (s)

R
ec

ei
ve

 W
in

do
w

 (
kB

)

 

 
HTML5 (IE)
Flash (IE)

(b) TCP Receive Window.

Figure 2: Short ON-OFF cycles. The evolution of the
TCP receive window shows that YouTube servers explic-
itly limit the download rate of Flash videos.

rate of the videos. For videos using the Flash container,
we obtain the video encoding rate from the header of the
video file being streamed. For HTML5 videos, YouTube
uses webM as the default codec. During our measure-
ments, we were unable to determine the encoding rate of
HTML5 videos because we observed an invalid entry for
the frame rate in the header of the webM files. There-
fore, we estimate the encoding rate of HTML5 videos by
dividing the Content-Length present in the HTTP re-
sponse by the duration of the video. For Netflix videos,
we do not use the accumulation ratio because the en-
coding rate used by Netflix depends on the end-to-end
available bandwidth [11].

In this section, we first detail the streaming strate-
gies used by YouTube and Netflix in Section 5.1 and
Section 5.2 respectively. We then discuss the implica-
tions of these strategies in Section 5.3.

5.1 YouTube Streaming Strategies
We now detail the buffering phase and the steady

state phase of the three streaming strategies used by
YouTube.

5.1.1 Short ON-OFF cycles

We observe short ON-OFF cycles for Flash videos
regardless of the browser used, and for HTML5 videos
when Internet Explorer is used.

In Figure 2, we present a representative trace ob-
served while streaming one Flash video and one HTML5
video; the videos were streamed using Internet Explorer
(IE) in the Research network. For both the videos, in
Figure 2(a), we observe a buffering phase followed by
a steady state phase. During the steady state phase
the download amount increments in short steps. We
present the evolution of the TCP receive window for the
two streaming sessions in Figure 2(b). In this figure we
observe that the TCP receive window periodically be-
comes empty when streaming the HTML5 video. This
implies that Internet Explorer throttles the download
rate of the HTML5 video by periodically pulling data
from the TCP buffers. In Figure 2(b), we do not ob-
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Figure 3: Amount downloaded during the buffering
phase. For Flash videos, approximately 40 seconds
worth of playback is downloaded in the buffering phase.
The buffering amount and the video encoding rate is
weakly correlated for HTML5 videos.

serve such explicit rate control by Internet Explorer
when streaming the Flash video. This implies that, for
the Flash video, the YouTube servers throttle the rate of
data transfer by periodically pushing the video content.
We observe this behavior for Flash videos regardless of
the browser. We do not present the supporting figures
due to space constraints.

We now detail the buffering phase and the steady
state phase when YouTube videos are streamed using
the strategy of short ON-OFF cycles. We use the videos
in the YouFlash and YouHtml dataset for these mea-
surements.
i) Buffering Phase. In Figure 3(a) we observe that
for most of the videos in the YouFlash dataset, YouTube
sends approximately 40 seconds worth of playback data
during the buffering phase. The playback time is cal-
culated by dividing the amount downloaded during the
buffering phase by the video encoding rate. We present
the cumulative distribution (CDF) of the playback time
in Figure 3(a). The steep slope for the distribution of
the playback time is because of the strong correlation
(correlation coefficient = 0.85) between the video encod-
ing rate and the amount downloaded during the buffer-
ing phase.

For the Residence and the Academic networks, in
Figure 3(a), we observe a smaller amount of buffering.
The smaller amount could be an artifact of our tech-
nique used to measure the amount downloaded dur-
ing the buffering phase; we consider the start time of
the first OFF period as the end of the buffering phase.
This technique is sensitive to packet losses and we ob-
served higher packet retransmissions, median of 1.02%
and 0.76% respectively, in the Residence network and
the Academic network.

For HTML5 videos, in Figure 3(b) we observe that
the amount of data downloaded during the buffering
phase is not strongly correlated to the video encoding
rate (correlation coefficient = 0.41). The results pre-
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Figure 4: Steady State for Flash Videos. The server
periodically transfers 64 kB of data to attain an accu-
mulation ratio of 1.25 (average download rate in steady
state phase is 1.25 times the video encoding rate).

0 256 512 768 1024
0

0.2

0.4

0.6

0.8

1

Block Size (kB)

C
D

F

 

 

Research
Residence
Academic
Home

(a) Block Size.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Accumulation Ratio

C
D

F

 

 

Research

Residence

Academic

Home

(b) Accumulation Ratio.

Figure 5: Steady State for HTML5 videos on Internet
Explorer. A significant number of blocks have a size of
256 kB. A wide range of accumulation ratios is observed
while streaming HTML5 videos using Internet Explorer.

sented in Figure 3(b) are for the Research Network. We
make similar observations for other networks.

In summary, we observe that the YouTube servers
push 40 seconds of playback data during the buffering
phase for Flash videos. For HTML5 videos, Internet
Explorer typically downloads from 10 MB to 15 MB
during the buffering phase. Therefore, the buffering
phase for HTML5 videos streamed to Internet Explorer
can be more aggressive. For example, for a video encod-
ing rate of 1 Mbps, 10 MB corresponds to 80 seconds
of playback time.
ii) Steady State Phase. We now show that YouTube
servers periodically transfer 64 kB blocks during the
steady state phase to attain an accumulation ratio of
1.25 for Flash videos. In Figure 4(a) we present the
distribution of the block sizes observed while stream-
ing videos in the YouFlash dataset; we observe that
64 kB is the dominant block size in each network. The
smaller block sizes observed in the Residence and Aca-
demic networks are because of packet losses that cause
TCP retransmission timeouts. We observe block sizes
larger than 64 kB when retransmissions due to packet
losses merge multiple short ON-OFF cycles to form a
larger ON-OFF cycle. In Figure 4(b) we observe an ac-
cumulation ratio of approximately 1.25 for the majority
of the streaming sessions in each network.
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Figure 6: Long ON-OFF cycles. Long ON-OFF cycles
are produced when blocks of large sizes are transferred
in the steady state phase. Chrome browser periodically
pulls large blocks resulting in long ON-OFF cycles.

For HTML5 on Internet Explorer, in Figure 5(a) we
observe that 256 kB is the dominant block size in each
network. As in the case of Flash videos, packet losses
cause the block sizes to increase or decrease when In-
ternet Explorer is used to stream HTML5 videos. In
Figure 5(b) we present the distribution of the accumu-
lation ratio when Internet Explorer is used to stream
HTML5 videos. In this figure, we observe a wide range
of accumulation ratios. We believe this wide range
is an artifact of our technique, or the technique used
by the media player, to determine the encoding rate
of HTML5 videos. The mean and median accumu-
lation ratio across all the measurements presented in
Figure 5(b) is 1.06 and 1.04 respectively.

In summary, Flash videos, and HTML5 videos on In-
ternet Explorer, use short ON-OFF cycles. The domi-
nant block size for Flash videos is 64 kB and it is 256 kB
for HTML5 on Internet Explorer.

5.1.2 Long ON-OFF cycles

In Figure 6(a) we present a representative trace for
the long ON-OFF cycles. We observe OFF periods
in the order of 60 seconds during this measurement
which was carried out in the Research network using the
Chrome browser. We observe that the TCP receive win-
dow periodically becomes empty in Figure 6(a). This
shows that Chrome throttles the data transfer rate by
periodically pulling large blocks of data resulting in long
ON-OFF cycles. We make similar observations when
HTML5 videos are streamed using the native YouTube
application for Android devices.

We now present our observations on the buffering
phase and the steady state phase when long ON-OFF
cycles are used to stream YouTube videos; we used the
videos in the YouHtml and YouMob dataset for our
measurements.
i) Buffering Phase. During our measurements we ob-
served that the amount downloaded during the buffer-
ing phase by Chrome and Android is independent of
the video encoding rate. In each network, we observe a

6



0 10 20 30 40 50
0

4

8

12

Time (s)

D
ow

nl
oa

d 
A

m
ou

nt
 (

M
B

)

 

 

Video1

Video2

(a) Download Evolution.

0 1 2 3
0

500

1000

1500

Encoding Rate (Mbps)

M
ea

n 
B

lo
ck

 S
iz

e 
(k

B
)

 

 
Video

(b) Block Size and Encoding
Rate.

Figure 7: Different streaming strategies for YouTube
videos on iPad.

scatter plot similar to the one presented for Internet Ex-
plorer in Figure 3(b). We do not present these figures
due to lack of space. We observe that while Chrome
typically downloads between 10 MB and 15 MB during
the buffering phase, the native YouTube application for
Android downloads from 4 MB to 8 MB during the
buffering phase.
ii) Steady State Phase. In Figure 6(b) we present
the distribution of the block sizes when long ON-OFF
cycles were observed when streaming YouTube videos.
In this figure we observe block sizes larger than 2.5 MB
for most of the streaming sessions; the measurements
carried out in the Research network using Chrome and
Android are presented as Rsrch. (Cr), and Rsrch.
(And.), respectively in Figure 6(b).

We observe a mean and median accumulation ratio of
1.34 and 1.29 for Chrome, and 1.24 and 1.15 for Android
in the Research networks. We do not present these re-
sults because we observe a wide range of accumulation
ratios. We believe this wide range to be an artifact of
our estimation process of the video encoding rate.

In summary, Chrome and Android periodically pull
blocks that have a size larger than 2.5 MB to throttle
the download rate in the steady state phase.

5.1.3 Combination of ON-OFF Strategies

We now use two videos from the YouMob dataset to
show that iPad uses more than one strategy for stream-
ing YouTube videos; we call these two videos Video1
and Video2.

For Video1, in Figure 7(a), we observe periodic
buffering followed by short ON-OFF cycles. Further, we
observe that 37 different TCP connections were succes-
sively used for the data transfer in the first 60 seconds.
For each connection, the HTTP GET request contained
the range of data requested for a given connection. The
amount of data transferred in each TCP connection var-
ied from 64 kB to 8 MB. In comparison, for Video2, we
observe short ON-OFF cycles in Figure 7(a); only one
TCP connection was used to transfer the video contents.

In Figure 7(b) we observe that the block size used
during a streaming session depends on the video encod-
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ing rate. A given YouTube video may be available in
multiple resolutions and the native YouTube applica-
tion chooses a resolution according to available network
and device capabilities [16]. This implies that stream-
ing strategies for mobile devices with large screens such
as the iPad may depend on end-to-end available band-
width. The measurements presented in Figure 7(b)
were carried out in the Research network which has suf-
ficient bandwidth for streaming high resolution videos.

In summary, we observe that the streaming strategy
depends on the encoding rate, and the end-to-end avail-
able bandwidth, for an iPad.

5.1.4 No ON-OFF Cycles

We observe the streaming strategy of no ON-OFF cy-
cles when neither the server nor the client limit the rate
of data transfer. The whole video is downloaded during
the buffering phase; such video streaming sessions do
not contain a steady state phase. This streaming strat-
egy is observed for the following two cases: HTML5
videos on Firefox, and for Flash HD videos.

In Figure 8 we observe that the download rate for HD
videos is not correlated to the encoding rate. We make a
similar observation for HTML5 videos on Firefox. The
measurements presented in Figure 8 were carried out in
the Research network. We made similar observations
for the other networks used in our measurements. To
ensure that this behavior is not due to a large buffer-
ing phase, we selected 50 HD videos and 50 HTML5
videos from the YouHD and YouHtml dataset that have
a duration larger than 1200 seconds. For each of these
videos, we did not observe a steady state phase during
the entire streaming session.

5.1.5 Discussion on ACK Clocks

TCP is an ack-clocked protocol [20]. The ACK clock
enables the TCP source to estimate the end-to-end
available bandwidth before sending a packet. This esti-
mate is used to determine the size of the TCP conges-
tion window. Allman et al. [13] suggest that the TCP
congestion window be reset after idle periods in the or-
der of a retransmission timeout. This reset ensures that
the TCP source does not overwhelm the network with-
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Figure 10: Streaming Strategies used by Netflix. Short
ON-OFF cycles for PCs and iPad. Long ON-OFF cy-
cles used for the Android application.

out probing the end-to-end available bandwidth.
In Figure 9 we present the distribution of the amount

of data received during the first round-trip time of the
ON periods in the Research Network. This amount is
a conservative estimate of the TCP congestion window
at the beginning of an ON period. For short ON-OFF
cycles we observed OFF periods of duration between
0.2 seconds to 5 seconds while for the long ON-OFF
cycles we observed OFF periods up to 80 seconds long.
In Figure 9 we observe that the congestion window is
not reset after the OFF periods. For example, for Flash
videos, we observe that the entire block of 64 kB is sent
without probing the end-to-end available bandwidth.
The curves in Figure 9 represent the minimum of the
TCP congestion window and the block size used during
the steady state phase. Because the block size depends
on the streaming strategy, and thus the application, we
observe different curves for each application in Figure 9.

This observation is important as the absence of an
ack-clock can increase the loss rate in the networks.

5.2 Netflix Streaming Strategies
We now use one video from the NetPC dataset and

one video from the NetMob dataset to provide an
overview of the strategies used to stream Netflix videos.
Figure 10(a) presents the evolution of the download
amount for the first 100 seconds from the beginning of
video download. In Figure 10(a) we observe short ON-
OFF cycles when Web browsers and the native appli-
cation for the iPad is used to stream the Netflix videos.
In Figure 10(b), we observe long ON-OFF cycles when
Netflix videos are viewed using the native mobile ap-
plication for Android. The measurements presented in
Figure 10 were carried out in the Academic Network.

We now use the videos in NetPC and NetMob dataset
to study the buffering and steady state phases.

5.2.1 Buffering Phase

In Figure 11, we observe that the amount downloaded
during the buffering phase depends on the application,
Web browser (for PCs) or the native mobile application.
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Figure 11: Buffering Amount. Netflix transfers multiple
copies of the same video content at different encoding
rates during the buffering phase.
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Figure 12: Distribution of block sizes for Netflix videos.
The block sizes during Netflix streaming sessions depend
on the application used.

In Figure 11(a), for PCs we observe download amounts
in the order of 50 MB; however, for the native iPad
application we observe download amounts in the order
of 10 MB. We now present a possible reason for this
behavior. Each Netflix video is available in different
encoding rates. Akhshabi et al. [11] show that when a
Netflix streaming session begins, the video fragments of
all the available encoding rates are downloaded during
the buffering phase. We hypothesize that the encod-
ing rates for an iPad may be selected from a subset of
available encoding rates. In Figure 11(b) we observe
that the amount of data downloaded during the buffer-
ing phase by the native Android application is in the
order of 40 MB. This is significantly larger than what
we observe for the native iPad application.

5.2.2 Steady State Phase

In Figure 12(a) and Figure 12(b) we observe that the
block sizes used to stream Netflix videos depend on the
application, Web browser or the native mobile applica-
tion. For example, we observe large blocks when Netflix
videos are streamed using the native Android applica-
tion. These large blocks produce long ON-OFF cycles
such as those observed in Figure 10(b). For the strategy
of short ON-OFF cycles, we observe that the majority
of the blocks have a size smaller than 2.5 MB. These
blocks are however slightly larger than the 64 kB and
256 kB blocks we observed when short ON-OFF cycles
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Strategy
No

ON-OFF
Long

ON-OFF
Short

ON-OFF
Engineering
Complexity

Not
required

Explicit support at Ap-
plication Layer

Receive buffer
occupancy

Large Moderate Small

Unused bytes
on user

interruption

Large
amount

Moderate
amount

Small
amount

Table 2: Comparison of streaming strategies.

were used to stream YouTube videos.
During our measurements we observed that Netflix

uses a large number of TCP connections to transfer the
video contents to PCs and the iPad. We are currently
not able to speculate the reasons for this behavior. We
observed ack-clocks when a new connection was used to
send a block of data; we did not observe ack-clocks when
a connection was used to send more than one block.
We observe ack clocks when Netflix videos are streamed
using the native mobile application for Android. We
have not presented these results due to lack of space.

5.3 Discussion
In this section we detail the network characteristics

of YouTube and Netflix traffic and show that strategies
used to stream YouTube and Netflix videos depend on
the application and the container. For the Flash con-
tainer, we observe the streaming strategy is indepen-
dent of the application used. This is because the appli-
cations do not control the data transfer rate; rate con-
trol, if any, is performed by the YouTube servers. How-
ever the YouTube servers do not limit the data transfer
rate when streaming HTML5 videos; each application
uses its own strategy to stream HTML5 videos. We
therefore observe a wide range of patterns for the buffer-
ing phase and the steady state phase for HTML5 videos.
When Netflix videos are streamed to Web browsers we
observe the same streaming strategy regardless of the
of the Web browser. However, the strategy is different
for the native mobile application for the Android device
and the iOS device.

In Table 2 we summarize the difference between the
three streaming strategies.

Of the three streaming strategies we identified, the
streaming strategies of no ON-OFF cycles is a TCP file
transfer. Therefore, we believe that this strategy re-
quires no complex engineering at the application layer.
The other two streaming strategies, short ON-OFF cy-
cles and long ON-OFF cycles, explicitly restrict the
data transfer rate at the application layer. We therefore
believe that engineering is required at the application
layer for the strategies of short ON-OFF cycles and long
ON-OFF cycles.

The strategies of short ON-OFF cycles and long ON-

OFF cycles achieve their goals by restricting the amount
downloaded during the buffering phase followed by re-
stricting the data transfer rate according to a desired
accumulation ratio. A small accumulation ratio and
buffering amount is desirable because it reduces the
amount of unused bytes in the buffers of the players.
This is also important for mobile devices that may have
storage constraints. The amount of unused bytes is also
important because recent studies have shown that users
tend to interrupt the video download due to lack of in-
terest [16, 17, 19].

The strategies of short ON-OFF cycles and long ON-
OFF cycles limit the data transfer rate at the appli-
cation layer. We show that the traffic characteristics
while using these strategies might not be the one of a
standard TCP flow. For example, we show the absence
of ack-clocks in the TCP connections used to stream
Netflix and YouTube videos.

We can therefore conclude that migration from one
application to another, or from one container to an-
other, can impact the aggregate video streaming traffic.
For example, migration from Flash to HTML5, and in-
crease in the usage of mobile devices are two possibilities
that cannot be ruled out. We present a mathematical
model to study this impact in the following section.

6. MODEL FOR AGGREGATE VIDEO
TRAFFIC

In Section 5.1 and Section 5.2, we show that the ap-
plication and the container determine the strategy to
stream videos. In this section, we present a mathemat-
ical model to express the stochastic properties of the
aggregate video streaming traffic as a function of the
video parameters. Our model can be used to dimension
the network and quantify the impact of migrating from
one strategy to another. We first develop our model for
the case of users that do not interrupt the video down-
load. We then study the impact of user interruption
due to lack of interest on the accumulation ratio and the
amount of data downloaded in the buffering phase. We
then quantify the amount of bandwidth wasted when
users interrupt the video download due to lack of inter-
est.

For our model, we assume that the video streaming
sessions arrive according to a homogeneous Poisson pro-
cess with rate λ. We use the measurements performed
by Yu et al. [25] for the Poisson assumption of the ar-
rival rate2. Let Tn, n ∈ Z, denote the arrival time of
the n-th video. We assume that n−th video is streamed
at a fixed encoding rate, en, and has a fixed duration

2Given the fact that users watch the videos in series, it is
easy to prove that the Poisson assumption is not needed at
the video level. It is enough to have the Poisson assumption
at the user level, which is very likely to be the case given
the human nature of this activity.
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(length), Ln; the size of the n-th video is Sn = enLn.
We also assume that the network is over provisioned:
the end-to-end available bandwidth is larger than the
video encoding rate for each video streaming session.
This hypothesis is validated by our measurements pre-
sented in Section 5.1.1. Indeed, for the videos in You-
Flash dataset we observed an accumulation ratio larger
than one, which implies that the download rate, and
hence the end-to-end available bandwidth, is larger than
the video encoding rate.

6.1 Video Download without Interruptions
We now model the aggregate data rate of video

streaming traffic when users do not interrupt the video
download. We first examine the strategy of no ON-
OFF cycles where the whole video is downloaded at the
end-to-end available bandwidth. We assume the time
required to download the n-th video is Dn. For the n-
th video, the video download is active at time t when
Tn ≤ t ≤ Tn+Dn. Let Xn(t−Tn) denote the download
rate of the n-th video at time t; Xn(t) = 0 when t < Tn

and t > Tn + Dn. Let R(t) denote the aggregate data
rate of the video streaming traffic at time t.

According to Barakat et al. [14], the mean and vari-
ance of the aggregate data rate are:

E[R(t)] = λE[Sn], (1)

VR = E[R2(t)] − (E[R(t)])2 = λE[

∫
Dn

0

X2

n
(u)du], (2)

respectively
When the download rate of the n-th video is a con-

stant Gn, substituting Dn =
Sn

Gn

, Sn = enLn, and

Xn(t) = Gn for Tn ≤ t ≤ Tn + Dn, in equations (1)
and (2) yields:

E[R(t)] = λE[en]E[Ln], (3)

VR = λE[en]E[Ln]E[Gn]. (4)

Equations (3) and (4) give the mean and variance of the
aggregate data rate of video streaming traffic when the
strategy of no ON-OFF cycles is used to stream videos.

We now show that when users do not interrupt the
video download, the mean and variance of the data
rate are independent of the streaming strategy used.
Let D′

n(> Dn) denote the time required to download
the video when the video contents are downloaded us-
ing either the short ON-OFF cycles or the long ON-
OFF cycles streaming strategy. For the n-th video,
the download rate is Gn during the ON periods and
0 in the OFF periods. If the download rate does not

change during the data transfer, then
∫
Dn

0
X2

n
(u)du =∫ D

′

n

0
X2

n
(u)du = enLnGn, which leads to the same vari-

ance as in Equation (4). Using the same argument and
the framework in Barakat et al. [14], one can extend
this result to higher moments of the aggregate traffic.

Name Description
λ Arrival rate of videos streaming sessions.
n number of videos.
en Encoding rate of the n-th video.
Ln Duration (or length) of the n-th video.
Bn Buffering amount for the n-th video.

B′

n

Buffering amount for the n-th video in terms of play-
back time.

Sn Size of the n-th video Sn = enLn.
kn The accumulation ratio for the n-th video.
βn Users interrupt the n-th video after time βnLn.
R(t) Aggregate data rate of streaming traffic at time t.

R′(t)
Aggregate amount of bandwidth wasted at time t

when users interrupt video download due to lack of
interest.

Table 3: Variables used in the model.

Therefore, when users do not interrupt the video
downloads, we conclude the following:

1. Equations (3) and (4) can be used to dimension
the network for video streaming. A simple rule
would be to set the bitrate of links carrying video
streaming traffic to E[R(t)]+α

√
Vr, where α ≥ 1 is

a constraint on the tolerable bandwidth violations.

2. The mean and variance of the aggregate data rate
of video streaming traffic are independent of the
underlying streaming strategies used, and hence
the required bandwidth. This is important as
video services, where the users are expected to
view the whole video and not interrupt the video
download, can safely select a streaming strategy
that can be optimized for other goals such as server
load without overwhelming the network.

3. An increase in the video encoding rate, for exam-
ple when YouTube increases the default video res-
olution, shall increase the aggregate rate of video
traffic. However, because the variance is a linear
function of the video encoding rate, the aggregate
traffic shall be smoother than the aggregate traffic
observed at lower encoding rates.

6.2 Video Download with Interruptions
Users can interrupt a streaming session due to various

reasons such as poor playback quality or lack of inter-
est in the given video. When a user interrupts the video
download due to lack of interest, the data downloaded
but not used by the player is wasted. The wastage of
network resources can be quantified using the amount
of unused bytes. The amount of unused bytes due to
lack of interest is important because Gill et al. [17] ob-
serve that 80% of the video interruptions in a campus
network are due to lack of user interest. According to
Finamore et al. [16], 60% of the YouTube videos are
watched for less than 20% of their durations. Similarly,
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Huang et al. [19] show that viewing time decreases as
the duration of the video increases.

We now present the impact of the buffering amount
and the accumulation ratio on the amount of unused
bytes. We assume that the user interrupts the down-
load of the n-th video after time τn from the start of
the video playback. We further assume that the amount
downloaded in the buffering phase is Bn, Bn ≥ 0, and
the time required for downloading this amount is negli-
gible. If Gn is the average download rate in the steady
state phase, then the amount of data that can be down-
loaded up to time τn is Bn + Gnτn. We keep denoting
the encoding rate and duration of the n-th video as en
and Ln respectively. Thus, the interruption of the n-th
video shall take place before the whole video has been
downloaded only if

enLn > Bn + Gnτn ≥ enτn. (5)

We now assume the download rate of the n-th video is

limited by the accumulation ratio kn =
Gn

en
, kn ≥ 1. We

also assume that τn = βnLn, where βn, βn < 1, is the
fraction of the n-th video watched before interruption.
Equation (5) can now be written as

enLn > Bn + enknβn  Ln ≥ enβnLn. (6)

When Bn = enB
′

n
, where B′

n
is the amount of play-

back time buffered in the buffering phase, the left hand
side of Equation (6) can be written as

B′

n < Ln(1 − knβn). (7)

In Section 5.1.1 we observed a buffering of 40 seconds
worth of playback, and an accumulation ratio of 1.25
for Flash videos. When a user interrupts the video
download after watching 20% of the video, substitut-
ing B′

n
= 40 seconds, kn = 1.25, and β = 0.2 yields

Ln = 53.3 seconds. This implies that, assuming a fast
buffering, YouTube Flash videos that have a duration
smaller than 53.3 seconds will be downloaded before the
viewers have seen 20% of the video.

We now use the amount of unused bytes to obtain
the average bandwidth wasted due to user interrup-
tion. When the n-th user interrupts the video down-
load at time τn, then the amount of bytes downloaded is
min(Bn+Gnτn, enLn). The total amount of bytes con-
sumed by the player up to time τn is enτn. Therefore,
the amount of unused bytes is min(Bn +Gnτn, enLn)−
enτn, and the average bandwidth wasted is given by

E[R′(t)] = λE[min(Bn + Gnτn, enLn) − enτn]. (8)

When the accumulation ratio of the n-th video is kn and
the user interrupts the video after viewing βn fraction
of the video, then substituting Bn + Gnτn = enB

′

n
+

enLnknβn in Equation (8) yields

E[R′(t)] = λE[en]E[min(B′

n + knβnLn, Ln) − βnLn].
(9)

In summary, Equation (7) provides a condition to
limit the amount of unused bytes when users interrupt
the video download due to lack of interest. Equations
(8) and (9) can be used to compute the amount of band-
width wasted due to user interruptions.

7. RELATED WORK
Maier et al. [22], and Labovitz et al. [21], show that

video streaming contributes to 25-40% of all HTTP traf-
fic. Due to its growing popularity, video streaming has
received considerable attention in the last few years.

A significant amount of research has been on the
video contents characterization on YouTube and on
viewing patterns on YouTube. Cha et al. [15] study
the popularity of videos and propose caching techniques
to enhance the user experience. Zink et al. [26] study
the viewing patterns in a campus network and suggest
proxy caches for enhancing the user experience and re-
ducing the network traffic. Gill et al. [17] study the
viewing patterns in a campus network and show that
80% of user interrupts in their campus were due to lack
of user interest. Similarly, Finamore et al. [16] show
that 60% of the YouTube videos are watched for less
than 20% of their duration.

These works are orthogonal to ours. Indeed, we focus
on the network traffic characterization of YouTube and
Netflix, not on the content characterization.

Plissonneau et al. [23], Saxena et al. [24], and Al-
cock et al. [12] observe rate limitations on YouTube
traffic. They do not identify the streaming strategies
discussed in our paper. Akhshabi et al. [11] only ob-
served a rate limitation in the steady state phase for
Netflix. Saxena et al. [24] show that the YouTube videos
streamed using the servers of Google have a buffering
phase, whereas the legacy servers of YouTube do not
show this buffering phase. Alcock [12] only character-
ized the strategy for short ON-OFF cycles for Flash
videos on YouTube.

To the best of our knowledge, we are the first to iden-
tify and characterize the three streaming strategies used
by YouTube and Netflix. Moreover, we derive a math-
ematical model to study the aggregate traffic due to
video streaming. Therefore, our work enhances signifi-
cantly previous knowledge on video streaming.

8. CONCLUSION
In this paper, we present an in depth traffic character-

ization of Netflix and YouTube. We identify three dif-
ferent streaming strategies with fundamentally different
traffic properties. We show that Netflix and YouTube
adapt the streaming strategy depending on the appli-
cation and the container used. This is a concern as it
means that a sudden change of application or container
in a large population might have a significant impact on
the network traffic. Considering the very fast changes
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in trends this is a real possibility, the most likely being
a change from Flash to HTML5 along with an increase
in the use of mobile devices.

We derive a model for the aggregate traffic generated
by the different streaming strategies. We use this model
to show that streaming videos at high resolutions can re-
sult in smoother aggregate traffic while at the same time
linearly increase the aggregate data rate due to video
streaming. We also show how the amount buffered and
the accumulation ratio can be adapted considering the
user interruptions due to lack of interest.

However, we did not consider the impact of the three
different streaming strategies on the network loss rate.
We believe that it will have less impact than the wasted
bandwidth due to lack of users interest that we studied
in this paper. It is anyway a possible area of improve-
ment.
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